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Adversarial MDPs - Literature

• Adversarial MDPs with function approximation:
• Adversarial linear MDPs in bandit feedback setting: !𝑂 𝐾!"/!$ [Luo et al., 2021]
• Adversarial linear mixture MDPs in full-information feedback setting: !𝑂 𝐾 [He et al., 

2022]

• Jin et al. Learning Adversarial Markov Decision Processes with Bandit Feedback and Unknown Transition. ICML, 2020.
• Luo et al. Policy optimization in adversarial mdps: Improved exploration via dilated bonuses. NeurIPS, 2021.
• He et al. Near-optimal policy optimization algorithms for learning adversarial linear mixture mdps. AISTATS, 2022.

Question: does there exist an algorithm with !𝑂 𝐾 regret for RL with linear function 
approximation and adversarial losses in bandit feedback setting?



Our contribution

• A new algorithm, termed as LSUOB-REPS, for adversarial linear mixture 
MDPs in the bandit feedback setting
• We prove !𝑂 𝑑𝑆$ 𝐾 + 𝐻𝑆𝐴𝐾 regret upper bound for LSUOB-REPS

• An Ω(𝑑𝐻 𝐾 + 𝐻𝑆𝐴𝐾) regret lower bound is also provided



Adversarial MDPs - Setting
• An adversarial MDPℳ = 𝒮,𝒜,𝐻, 𝑃% %&'

()*, ℓ+ +&*
,

• In each episode 𝑘 = 1,2, … , 𝐾:
• In each step ℎ = 0,2, … , 𝐻 − 1:
• Observes state 𝑠, and takes action a ∼ 𝜋+(⋅ |𝑠)
• Then observes loss ℓ+(𝑠, 𝑎), and transits to next-state s′ ∼
𝑃%-*(⋅ |𝑠, 𝑎)



Adversarial MDPs - Setting
• Particularly, transition 𝑃% in linear mixture MDPs satisfies

𝑃% 𝑠. ∣ 𝑠, 𝑎 = 𝜙 𝑠. ∣ 𝑠, 𝑎 , 𝜽%∗

where 𝜙 is a known feature mapping and 𝜽%∗ is an unknown 𝑑-
dimensional vector



Adversarial MDPs - Setting
• Let ℓ+(𝜋) be the expected loss of policy 𝜋 in the 𝑘-th episode
• Learning objective: minimize the cumulative regret 

𝑅 𝐾 = G
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ℓ+ 𝜋+ −G
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,

ℓ+ 𝜋∗ ,

where 𝜋∗ ∈ argmin0∈2 ∑+&*, ℓ+(𝜋) is the optimal policy in hindsight



Method
• High-level idea:
• Maintain an ellipsoid confidence set 𝒫+,% for 𝑃%
• Perform online mirror descent (OMD) over the occupancy 

measure space
• Use an optimistically biased loss estimator in OMD

Key technical challenge!



Method
• To construct 𝒫+,% and control the error of occupancy measure:
• We do not use the value-targeted regression (VTR) scheme
• Instead, we learn 𝜽!∗ via solving

𝜽#,! = argmin
𝜽∈ℝ!

)
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𝝓 𝑠(,!+*, ∣ 𝑠(,!, 𝑎(,! , 𝜽 − 𝜹-",$%& 𝑠(,!+*
, . + 𝜆 ∥ 𝜽 ∥.. ,

where 𝑠(,!+*, is called as the imaginary next state
• Particularly, 𝑠#,!+*, is chosen to be

𝑠#,!+*, ∈ argmax-∈𝒮$%& 𝝓 𝑠 ∣ 𝑠#,!, 𝑎#,! 𝑴'(&,$
(& ,

where 𝑴#,! = ∑()*# 𝝓 𝑠(,!+*, ∣ 𝑠(,!, 𝑎(,! 𝝓 𝑠(,!+*, ∣ 𝑠(,!, 𝑎(,!
1 + 𝜆𝑰 is the 

feature covariance matrix



Concluding Remarks

• Contribution:
• We propose the LSUOB-REPS algorithm, for adversarial linear mixture MDPs in the 

bandit feedback setting, based on a new regression scheme
• We prove 9𝑂 𝑑𝑆. 𝐾 + 𝐻𝑆𝐴𝐾 regret upper bound for LSUOB-REPS
• An Ω(𝑑𝐻 𝐾 + 𝐻𝑆𝐴𝐾) regret lower bound is also provided

• Thank you!


